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Abstract

In multi-group epidemiological models with nonrandom mixing between people in the different groups, often
artificial constraints have to be imposed in order to satisfy the balance conditions. We present and analyze
simple selective mixing models governed by systems of ordinary differential equations, where the balance
conditions are automatically satisfied as a natural consequence of the equations. These models can be applied
in situations where biased partnership formations among people in different risk, social, economic, ethnic, or
geographic groups must be accounted to accurately predict the epidemic. Because in these models the actual
number of partners an individual has depends upon the distribution of the population, the threshold conditions
are a sensitive function of this distribution. We formulate threshold conditions for the model and analyze the
sensitivity of these conditions to different population distributions, to changes in transmission rates and to the
biasing in the partnership selection. These conditions were determined by either explicitly defining a Liapunov
function or by using the eigenvalues of the Jacobian matrix to calculate a reproductive number. We present
numerical examples to illustrate how the reproductive number depends upon the variations in the population and
transmission parameters. Published by Elsevier Science B.V.
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1. Introduction

A major determinant in the spread of sexually transmitted diseases (STDs) is the way that individuals
select their sexual partners. It is important to understand and correctly account for the formulation of
the partnerships to accurately model an STD epidemic.

Blythe, Busenberg, Castillo-Chavez, and their coworkers [1-4] have formulated multiple group
models, where the mixing functions or mixing matrices are based on the average activity, c¢;, of
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individuals in group ¢ and the average fraction p;; of partners in group j of a person in group i.
Because the partnership formation must satisfy balance constraints to insure that the number of part-
nerships formed by people in group A with people in group B in a given period of time equals the
number of partnerships formed by people in group B with people in group A, often artificial constraints
or complicated mathematical derivations must be imposed.

Hyman and Stanley [9,10] formulated risk-based models and pair-formation functions based on the
assumption that people in certain groups have priority in choosing their partners. Again, the mixing
functions lead to complicated integral equations for the mixing functions, which are mathematically
less tractable, and some artificial or special acceptance functions have to be employed.

Jacquez, Koopman, Sattenspiel, Simon, and their coworkers [11-16,18-20] in their sequence of
articles introduced heterogeneous mixing in structure models which generate symmetric matrices of
the rate of sexual contacts between individuals categorized into discrete population subgroups. Then,
the balance constraints are automatically satisfied. This feature simplifies the analysis and numerical
approximation of the models, while still accounting for the effects of biased mixing, and provides
opportunities in further studies of STDs to take other important factors into consideration [8].

In this article, we analyze a version of the social structured heterogeneous mixing models first
proposed by Koopman et al. [14,15], where an individual’s preference in the partner selection is
predetermined, rather than the number of partners that they have.

We first consider the discrete case where the population is divided into subgroups based on risk
levels, age, social behaviors, economic status, ethnic, or geographic positions. We then discuss the
basic features of the model in Section 3 and give a mathematical analysis in Section 4 for simple
two-group models. A generalization of the model to a continuum is given in Section 5 and our findings
are summarized in Section 6.

2. The biased preference model formulation
We divide the susceptible and infected populations into K groups, S; and [;, i = 1,..., K, according

to their risk level or other factors, and consider the following simple SI model with constant recruitment
rate,

ds;

d—tz = u(S) — Si) — MiS,,

dI. 1=1,..., K, 2.1
d_tz = —(p+vi)li + XS,

where p is the natural death rate, 1/v; is the mean duration of the incubation period, J; is the rate of
infection, and uS? is the rate of recruitment into group .

The formation of partnerships plays an essential role in determining the functional \;. We define
a partnership to be sexual activity between two people where the infection can be transmitted (e.g.,
sexual intercourse). We assume people in each group behave the same when selecting a partner, but
have biases between groups. In other words, mixing within each group is assumed to be homogeneous
but there is heterogeneous mixing among the groups. The formation of partnerships is one of the
most important factors in modeling STDs. It depends on the desirability of an active individual, the
acceptability of his/her potential partners, and the availability of these potential partners.
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Let g;; be the preference of people in group ¢ to have a partner from group j; that is, g;; is the
fraction of people in group j with whom an individual in group ¢ desires forming a partnership.
Thus g;; describes the desirability of people in group 7 to have a partner from group j. It is also the
acceptability of people in group j to people in group .

Under the condition that enough potential partners are available, the probability p;; that a partnership
forms between individuals from group 7 and group j, or the mutually acceptable rate for sex, see [14],
is

Pij = i Q5i- 2.2)

Define c; to be the number of social contacts for a person in group ¢. The probability that a contact
is with a person from group j is ¢;N;/ ", ck Nk, where N = Sy + Ij. This also characterizes
the availability of contacts with partners in group j. Hence, the probability of a partnership forming
between individuals from group i and group j is pijc;N;/ D i ck Nk

We define §3;; to be the probability of disease transmission per sexual contact between an infected
partner in group j and a susceptible individual in group :. Under these assumptions, the infection rate
of people in group i is

c;il;
Ai = ¢ sz]ﬁm Z Ny (2.3)

1=1

The preferences need not be symmetric (i.e., ¢;; # g¢j, when ¢ # j), but the probability of a
partnership forming is symmetric since p;; = ¢;;¢;; implies p;; = p;;. Also, we note that there is no
constraint on E ¢;j, which may be less than or greater than one.

Two special cases of the model (2.1) with the infection rate (2.3) are the restricted mixing model
when g¢;; = 0 (hence p;; = 0, 7 # j) and the proportional mixing model when ¢;; = 1, for 4,5 =
1,...,K [11].

2.1. Balance constraints

We denote the number of contacts per unit time of people in group ¢ with people in group j by
T;;. The number of contacts with people in group ¢ that people in group j have is also T;;, that is
T;; = Tj;. These are the balance constraints that need to be satisfied at all times. In multi-group models
where an attempt is made to directly control the number of partnerships formed between groups, these
balance conditions usually are artificially enforced (see, e.g., [9-12,17]). However, in the selective
mixing model, the balance constraint

CiN
p]'l z Nk

is automatically satisfied. Thus, by using the acceptability g;; or desirability g;; of an individual from
group ¢ to an individual from group j as the primary control variable in these models (instead of the
number of partners an individual from group ¢ desires from group j), the balance constraints become
a natural consequence of the model, rather than an artificially imposed constraint.

c;:N;
T = pz‘jmJN—k ciN; = ciNj =Ty (2.4)
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2.2. The actual number of contacts

The number of sexual contacts per individual per unit time in many multi-group models is assumed
to be constant. When all ¢;;’s equal one (proportional mixing), this is also true for the selective
mixing model. However, if the mixing is biased, the actual number of contacts, denoted by 7;, for the
selective mixing model will vary in time depending on the combination of desirability, acceptability,
and availability.

Define P(i) as the probability that an individual in group ¢ finds a partner from any group. The
actual number of contacts per person in group ¢,

ri=ciP (Zpu > Nk) 2.5)

reaches its maximum c; only for the proportional mixing, where p;; = 1 (i.e., everyone is acceptable
as a partner).

If the mixing is biased, the acceptability and the availability of partners must be taken into consid-
eration and a limitation may occur. Then p;; < 1, and hence r; < ¢;.

Example 1. Consider the two-group model governed by

ddS w(S2 — S;) — AiSi,
dl? i=1,2, (2.6)
d_tl = —(N + Vi)Ii + X\ S;,

with

C
Aj = N(Pilﬂu[l + pi2Binls).

Here, for simplicity, we assume that the number of social contacts in both groups are the same: ¢; = c.
The actual number of contacts is r; = (¢/N)(pi1 N1 + piaN2) and

c )
T -1y = N((Pn —p)Ni + (p — p2) \2),

where p .= pjp =py and N := N} + N,.

If p11 < p < p22, the mutually acceptable rate of sex for people in group 1 with people in group 2
is greater than that with their own group, but people in group 2 have higher mutually acceptable
rate of sex with their own group. Hence r; < ry; that is, the probability of forming a partnership
for people in group 1 is less than that for people in group 2. On the other hand, if p;; < p and
p > paa, people in both group attempt to form partnerships with people in other group. In this case,
the availability of potential partners will play a more important role. We use the following model
parameters to demonstrate the observation:

SY =350, S1(0) =350, I,(0)=10, S9=100, S,(0)=100, IL(0)=250,
vy =0.15, 1, =0.15, qun =06, qr=1, q21 =0.5, g2 = 0.2,
p=0015 c=35, Bi; = 0.1.
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The actual numbers of contacts for people in group 1 and group 2 as functions of time are illustrated
in Fig. 1 and the numbers of populations in the subgroups are illustrated in Fig. 2.

Since p1; = g3, = 0.36, pn = ¢3, = 0.3, and p = qi2q21 = 0.5, people in both groups prefer
their partners from the other group. In the beginning, N; and N, are close. Because p1; > p2, the
number of actual contacts of people in group 1 is greater than that of people in group 2. However,
as time elapses, the population size in group 2, N;, is much smaller than that in group 1, N;. People
in group 2, who attempt to find partners in group 1, have more chances to succeed than people in
group 1, who attempt to find partners in group 2.

3. Preliminary studies
3.1. Thresholds

The concept of threshold conditions is one of the most important concepts in mathematical epidemi-
ology (see [6,7,13,21]). It specifies when the disease will spread if a small number of infected people
are introduced into the susceptible population. The threshold conditions are usually characterized by
the reproductive number which is determined by the stability of the infection-free equilibrium.

In model (2.1), the stability of the infection-free equilibrium (S; = S?, I, =0),i=1,... K,
is completely determined by the equations for I;, and can be investigated by either constructing a
Liapunov function or locating the eigenvalues of the Jacobian matrix evaluated at the equilibrium.

Assume that the transmission probability 3;; = &; is the product of the susceptibility of the
uninfected person in group ¢, &;, and the infectiousness of the infected individual in group j, (;.
Suppose that people select their partners without discrimination of groups so that g;; = ¢; and hence
Pi; = ¢:q;. Then we can use the Liapunov function motivated from [20],

_ Z Gy '
B+

When the total time derivative of V' along solutions of model (2.1),

s9? §JC]q
= N0 Z it VJ g ZCkaCJJk - Xj:CijCjIj

L 556499
- (m iy ) 2 el
is positive, the epidemic grows. Here NV = Zf__l ciSZQ. This determines the reproductive number

'SJCJQ
_ .7 77
Ro = NOZ p+uv;

In the more general case when p;; # g;q;, we can use the Liapunov function

-5 (Som) 2
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Its time total derivative is
250

V= Z Z Bijpijcid; + Z ( Z ﬂzgng) 2N Z BikPjkCilk
0
= Z (( (+ ;) N° Z%%) - 1) ZﬁjkpjkaIk-
k

Then, we can define the reproductive number for the ith subgroup as

250
Ry = (H"’ I/ NO (Zﬂ]ip]l)

If Ry > 1, for all 4, the epidemic persists in the population. If R,y < 1, for all 4, the disease-free
equilibrium is globally asymptotically stable and the epidemic dies out in the population, regardless
of the initial levels of infection.

A more interesting case occurs when there are R;’s both greater than and less than one. In this
case, it is difficult to construct a suitable Liapunov function to determine a reproductive number for
the whole population. Then, we can derive reproductive numbers by investigating local stability of the
infection-free equilibrium, that is, the location of eigenvalues of the following Jacobian matrix:

( 511]3115 cl Biap12Sies BikpikSick \
B N0 N0 o N0
Boip21S9e Brp2Sies Bakpak Sck
J = NO p—n NO NO
Br1px1S%c Brapr2S%c et Br kKK S%CK
NO NO poVE NO

(see, e.g., [5-T]).

In general, it is not an easy task to locate the eigenvalues of the Jacobian matrix. However, the
eigenvalues of the Jacobian for the two-group model can be calculated explicitly and the reproductive
number for the whole population can be represented by

1
Fo = (2u+11 +1n)NO (a“ tont \/(VI — 12 +an —an)? +4ana ), (3.1
where
= SO 25 _ SO
Q) 1¢1P11pP11, ajp = SjcicaBiapiz,
a1 = 5(2)0162621])21, Q2 = Sgéﬁzzpzz,

In fact, in this case, the Jacobian has the following form:

bt Bupn S Brap12Slcic
J_ u—u — N0 N
BapaiSicicy - Baap22 S9c3

NO —HTR NO
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Denote 6; = p + v;, and a;; := B,vjpijS,?cicj/NO, 1,7 = 1,2. Then
-6 +a a
J= 1 11 12 ’ (3.2)
as) —by +an
The eigenvalues of (3.2) are
p= %(—(51 —ayp + 0 —an) £ \/((51 —an) — (6 — azz))2 +4aa; )
Since ((6; — a11) — (62 — an))? + 4apaz; > 0, the larger eigenvalue is

pt = %(—(61 —ay + 6 —axp)+ \/((51 —an) — (& - a22))2 +4a2a1 )

Hence, (3.2) is stable if p* < 0, or equivalently,

aiy +axn + \/((51 —an) = (6 — a2))” +4anay <6 + &,
and (3.2) is unstable if

a] +ax + \/((51 —an)— (6 — (122))2 + 4apaz > 61 + 6.

Then, the reproductive number in (3.1) is obtained.
3.2. Sensitivity of the reproductive number

The reproductive number combines all the demographic and epidemiological parameters and the
complex dynamics of the disease transmission in sensitive to combinations of these parameters. To
gain insight into this sensitivity, we now analyze the effects of parameter changes on the reproductive
number. First, the reproductive number Ry in (3.1) increases if the transmission rate ;;, the mean
duration of the incubation period 1/v;, the number of the social contacts ¢;, the probability of part-
nership formation p;;, or recruitment rate S? increases, which is determined by the positive growth
rates

oRy 0Ry 0Ry ORy ORy
a/Bz], a(l/l/l)’ aCz ) apma aSg
Next, for simplicity, we assume that the transmission probability ;; and the mean duration of the
incubation period, 1/v;, are independent of groups, that is, 3;; = 3, ¢; = ¢, and v; = v. Then, the
reproductive number becomes

pe?
2(p+v)NO

The sexual behavior of individuals is characterized by g;;. For people in group 4, the larger > ; 4ij
is, the fewer selective they are about whom they form a partnership with. Consider the case where
the behavior of people in group 2, (¢21,¢22), and the average desirability of people in group 1,
@ := q11 + q12, are fixed. That is, we assume people in group 1 may switch their preference between
the two groups, but their “total” preference does not change. We now use g2 :== ¢, 0 < ¢ < @, as
a parameter to study the effects of the relative desirability of people in group 2 on the reproductive

Ry = (Pns? + 92289 + 1/ (p11S) — p2259)? + 4p12p21 SYSY )
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number. A large g implies that people in group 1 prefer their partners more from group 2 and are less
interested in forming partners within their own group.
In terms of ¢q,

Ro(q) = s YN ((Q q)’S? + qnSs + \/ —q)*S) - Q2250) +4g3, 579247 )

2u+v

A straightforward calculation shows that if
SVQ* < 45,59,
the reproductive number Ry(q) is an increasing function of g. If
SIQ* > 65,53,

there exists a unique g*, in (0, @), such that the reproductive number Ry(q) assumes its minimum
at ¢*. Ro(q) decreases as g increases from 0 to ¢* and increases as ¢ increases from ¢* to (). When
S? < q2250 /Q?, SOQ2 < q%zSO Partners will be more likely formed with people in group 2. Then,
as the preference with people in group 2 for people in group 1 increases, more partnerships will be
formed and the infection spreads faster. On the other hand, if SO > q2250 /@2, that is SOQ2 > qzzSg ,
the probability of partnership formation within group 2 is smaller than the probability of partnership
formation of people in group 1. As people in group 1 increase their preference with people in group 2
to g*, they decrease their preference within their own group since giz + ¢ is constant. Then, less
partnerships will be formed and the infection spreads slower. However, if ¢ exceeds ¢*, the probability
of partnership formation for people in group 2 with people in group 1, p2; = ¢21g, increases and
more partnerships are formed, which leads to an increase of Ry again. For small ¢;; and ¢ (< q),
most partnerships are formed within group 1. As g increases, Q@ — ¢ decreases. Then there are fewer
partnerships formed, and Ry decreases. When g exceeds ¢*, most partnerships are not formed within
group 1, but between group 1 and group 2, and Ry increases. If g2, is large, an increase in g will cause
more partnerships to form which leads to Ry always increasing as g increases. These relationships are
illustrated in the following example.

Example 2. Consider model (2.6) again with the parameters

sY =100, S§Y=200, pB=015  p=0015  v=015 = c=35,
q21=O'5> QZI,

where we increase ¢»; from 0.3 to 0.7 with an increment 0.05. The reproductive number is an increasing
function of ¢ when gy > 0.7, since S9Q% < ¢3,59. When ¢ < 0.7, SYQ° > ¢3,59, and the
reproductive number as a function of q is concave and the smaller ¢,; is, the larger the minimum point
g* is. The reproductive numbers, as functions of g, for different g2, are illustrated in Fig. 3.

The numbers of susceptibles and infectives with g; = 0.3 are shown in Fig. 4, where ¢ = q12 = 0.3,
and in Fig. 5, where ¢ = q12 = 0.9, respectively. As is shown in Fig. 3, there is a threshold value of
g such that Ry changes from decrease to increase. When ¢ = g2 = 0.3, the reproductive number is
less than one and hence the epidemic dies out. When g = g1 = 0.9, Ry > 1. The epidemic persists
in the population.
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4. Generalization to a continuum

The selective mixing model can also be applied to a population with a continuum of biased mixing
behavior.

Let z be a continuous state vector of characteristics (such as age, geographical positions, or behav-
ioral traits) of individuals in a population X. Let S(¢,z) and I(¢,z) be the continuous densities of the
susceptible and infected subpopulations respectively and define N (¢, z) := S(¢,z) + I(¢, z).

Assume that the desirability of an individual in state  to form a partnership with an individual in
state y is described by ¢(x,y), x,y € X. The acceptability of an individual of state x to an individual
of state y then is q(y, x).

Define c(x) as the number of social contacts of an individual in state z. The availability of individuals
with state y in the population is c(y) N (t,y)/W (t), where W (t) := [, _y c¢(z)N(¢,z) dz, and the actual
number of contacts of an individual of state x per unit time is

rlte) = g | 9l d.

yeX

The infection rate of a susceptible individual in state z by an infected individual in state y can be
expressed as

At z) = /ﬁwy (z,9)q(y, z)e(y)I(t, y) dy,

yEX
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where ((z,y) is the transmission rate of the disease from an infected individual in state y to a
susceptible individual in state z.

The probability that a partnership forms, p(z,y) := q(z,y)q(y,z), is symmetric and the balance
constraints are automatically satisfied.

The dynamics of the epidemic is governed by the following system:

D;S(t,z) = A(z) — (u(z) + At, ) S(¢t, x),
DI(t,z) = A(t,z) — (u(z) + v(z))I(t, z),
where D; denotes the total derivative with respect to time and A(z) is the flow into the susceptible

population.
There is an infection-free equilibrium (S%(z),0), where S°(z) can be explicitly solved from

B Aw) - ()5 ().

The stability of this infection-free equilibrium defines the threshold conditions for the continuous
model similar to those analyzed for the discrete model in Section 3. We plan our investigations into
the dynamics of this model and will describe them in a near future.

5. Discussion

We start with the preference behaviors of individuals in the sexually active population to formulate
a variation of the selective mixing model proposed in [14]. One of the main features of the selective
mixing model is that the balance constraints for biased mixing functions are automatically satisfied.
The approach can be applied to situations such as mixing between people in different social, economic,
ethnic, or geographic groups, where biased partnership formation is central and where the satisfaction
of the balance conditions may be extremely complex.

Another important feature of the selective mixing model is that the partnerships formed in the
population depend on the desirability and acceptability of individuals in each group. While the number
of social contacts of people in each group is presumed, the actual number of partnerships formed
depend upon the number of potential partners available and initial acceptance. We believe that in
many situations this is a more reasonable assumption than the fixed number of partners in each
group independent of the availability of desirable partners. Moreover, this important feature results
in more flexible models for nonrandom mixing including other factors for the spread of the disease
as is discussed in [9,10], and models taking other important factors such as density dependence into
consideration [8].

For mathematical simplicity, we assume that the desirability and the acceptability are constant in
the model. This implies that the acceptability of partners is independent of the environment. This
simplification allows us to formulate explicit threshold conditions for the model and analyze the
sensitivity of these conditions to changes in transmission rates and to the biasing in the partnership
selection. The threshold conditions are a sensitive function of the distribution of the population among
the different groups. The explicit representation of the threshold conditions clearly illustrate how
changes in the population could dramatically affect the reproductive number of the epidemic. The
simplification of the model does however restrict its applicability in a rapidly changing population.
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In a more realistic model, people would adjust their acceptability according to availability of their
desired partners. That is, the acceptabilities g;; should be density dependent functionals of N; or I;/N;,
although this modification certainly increases difficulty in mathematical analysis (see [8]).
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